
§  Diffusion in electrode and electrolyte 
governed by Fick’s second law 

§  Shrinking-core model for electrode; Li+ 
transported from surface to center of particles. 

§  Material property changes coupled with C-rate 
dependent lithiation stage during discharging. 

§  Lithiation stage :  
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Phase Transformation during Discharging Effect of C-rate and Volume Fraction on Mechanical Stress at the Electrode-Electrolyte Interface 

§  We investigate mechanical stress evolution during lithiation with different particle sizes, C-rates in a half-cell battery system.  
§  Our simulations demonstrate that both electrode and electrolyte material properties have greater effects when studying mechanical stresses on the electrode-electrolyte 

interface 
§  These computational models would aid on mitigating higher stresses in cathode particles to ensure longer battery cycle life. 

§  Tensile stresses are mainly caused by 
volume expansion; compressive stress 
mainly caused by electrolyte fluid pressure 

§  Tensile stresses are highly affected by C-
rate; compressive stress highly affected by 
volume fraction (i.e., particle size). 

§  Increase in volume fraction and C-rate 
increase both compressive and tensile 
stresses. 

§  Stress increases initially, followed by a 
decrease after reaching peak values during 
lithiation due to concentration gradient 
(similar trends observed in LiCoO2). 

§  A need to relief stresses on the electrode-
electrolyte interface 

Promising Power Source; 
Lithium-ion Batteries : 
§  Low cost, toxicity, high 

thermal stability, 
electrochemical performance, 
and high specific capacity. 

§  Good potential for electronic 
devices and transportation 
(HEV, PHEV, and EV) 

Motivations: 
§  Significant capacity loss during high charging/discharging current-rate (C-rate).  
§  Higher stress in the electrode → particle fracture → short circuit. 
§  A need for computational models considering electrode and electrolyte: Fluid-Structure Interactions. 

Lithium-Iron-Phosphate (LiFePO4) as a Cathode Material : 
§  High volumetric energy (970 WhL-1), low exothermic peak temperature 

(289oC), and heat flow (-6 Wg-1). 
§  One dimensional lithium diffusion. 
§  Li-poor phase (FePO4) → Li-rich phase (LiFePO4) ; volume expansion. 
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