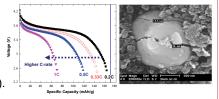
NC STATE UNIVERSITY

Mechanical Stresses at Electrode-Electrolyte Interface in Lithium Batteries

Sangwook Kim and Hsiao-Ying Shadow Huang

Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC

Introduction and Background

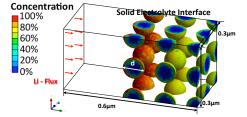

Promising Power Source: Lithium-ion Batteries :

- Low cost, toxicity, high thermal stability, electrochemical performance and high specific capacity.
- Good potential for electronic devices and transportation (HEV, PHEV, and EV)

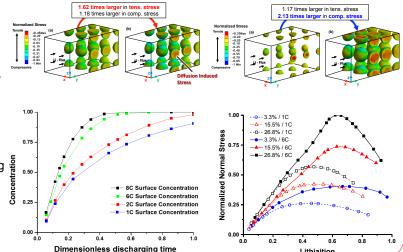
Lithium-Iron-Phosphate (LiFePO₄) as a Cathode Material :

- High volumetric energy (970 WhL⁻¹). low exothermic peak temperature (289°C), and heat flow (-6 Wg⁻¹).
- One dimensional lithium diffusion.
- Li-poor phase (FePO₄) \rightarrow Li-rich phase (LiFePO₄) ; volume expansion.
- Motivations:
- Significant capacity loss during high charging/discharging current-rate (C-rate).

- Higher stress in the electrode \rightarrow particle fracture \rightarrow short circuit.
- A need for computational models considering electrode and electrolyte; Fluid-Structure Interactions


Effect of C-rate and Volume Fraction on Mechanical Stress at the Electrode-Electrolyte Interface

Methods and Results


Phase Transformation during Discharging

- Diffusion in electrode and electrolyte governed by Fick's second law
- Shrinking-core model for electrode; Li⁺ transported from surface to center of particles.
- Material property changes coupled with C-rate dependent lithiation stage during discharging.
- Lithiation stage :

- Tensile stresses are mainly caused by volume expansion: compressive stress mainly caused by electrolyte fluid pressure
- Tensile stresses are highly affected by Crate; compressive stress highly affected by volume fraction (i.e., particle size).
- Increase in volume fraction and C-rate increase both compressive and tensile stresses.
- Stress increases initially, followed by a decrease after reaching peak values during lithiation due to concentration gradient (similar trends observed in LiCoO₂).
- A need to relief stresses on the electrodeelectrolyte interface

Discussions and Conclusion

- We investigate mechanical stress evolution during lithiation with different particle sizes, C-rates in a half-cell battery system.
- Our simulations demonstrate that both electrode and electrolyte material properties have greater effects when studying mechanical stresses on the electrode-electrolyte interface
- These computational models would aid on mitigating higher stresses in cathode particles to ensure longer battery cycle life.

I ithiaition

