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Background and Objectives

(The needs for high C-rate lithium-ion batteries.

\

= Lithium insertion during charging/discharging — Diffusion-Induced-Stress.
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How Li-ion battery works 2

Volume change during

= Capacity loss is observed at high C-rates. Li-insertion
= Particle fractures and crack growth are observed after cycling.
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Investigate how C-rate
might affect diffusion-
induced- stresses
inside materials?
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/- Concentration dependent diffusivity cannot be neglected.
= Higher C-rate - Higher concentration gradient.
= Surface concentration saturation occurs faster at higher C-rates.
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= Concentration profiles become the same after 50% lithiation stage.

= Higher C-rate - Higher concentration gradient - Higher strain energy.

= Higher C-rate - Higher concentration gradient - Higher internal
stresses.
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Conclusions

/- Apply the thermal stress analysis approach. ﬁ‘; B Anode (Carbon) Y N
- aT V Li Flux separator/Electolyte | | = The concentration dependent diffusivity need to be incorporated in the
HeatFlux ¢= dy N Cathode LiFePO,) simulation model since it will affect concentration profiles.
a¢ Current Collector (Al)
Mass Flux .J = N = Higher C-rates (more Li-ions pumped into the material in less time) will

Four cases are studied: 1C, 2C, 6C, 10C

= Finite element model by ANSYS.

= Concentration dependent material property
[CEI=ACT " +(1-n[CT™

= Concentration dependent diffusivity

(D) =X{D]“" +(1-x)[D)"""
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result in higher concentration gradients inside materials, leading to
higher strain energies and internal stresses. Thus the tendency for the
particle fracture is higher at high C-rates.

= The results of the current study suggest that lowering the
concentration gradient could help reduce internal stresses inside
battery materials and therefore reduces the capacity loss of the

lithium-ion battery.
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